
Learning Robust Autonomous Navigation and
Locomotion for Wheeled-Legged Robots

Joonho Lee1∗, Marko Bjelonic2,†, Alexander Reske2,†,
Lorenz Wellhausen2,†, Takahiro Miki1, Marco Hutter1

1Robotic Systems Lab, ETH Zurich, Switzerland
2Swiss-Mile Robotics AG, Switzerland

†Substantial part of the work was carried out during their stay at 1
∗Please address correspondence to jolee@ethz.ch

This research addresses the challenges wheeled-legged robots face in achiev-

ing locomotion and autonomy in complex environments. We present a fully

integrated system comprising locomotion control, mobility-aware navigation

planning, and large-scale planning. We use model-free reinforcement learn-

ing (RL) techniques and privileged learning to develop a versatile controller

capable of smoothly transitioning between walking and driving modes, jump-

ing off tables, and overcoming other obstacles. The mobility-aware naviga-

tion tightly integrates with the locomotion controller using a hierarchical RL

framework. This integration enables the robot to navigate complex environ-

ments with challenging terrain and static and dynamic obstacles. Autonomous

deployments in the city of Zurich and Seville further validate our approach.

The system successfully completes kilometer-scale missions, showing robust-

ness and adaptability. Our research highlights the importance of integrated

control systems for seamless navigation and locomotion in complex environ-

ments. The findings contribute to the feasibility of wheeled-legged robotic so-

1

lutions and hierarchical RL for large-scale navigation, with implications for

last-mile delivery and beyond.

Summary

Hierarchical Reinforcement Learning Facilitates Robust and Efficient Autonomy in Real-World

Deployments of Wheeled-Legged Robots

Introduction

A significant portion of the population resides in urban areas, leading to a considerable chal-

lenge in supply-chain logistics, especially for last-mile deliveries. The increasing traffic and

demand for faster delivery services put additional pressure on our roads. By shifting reliance

from individual motorized transportation to smart and versatile robotic solutions, we can sig-

nificantly improve the efficiency of urban delivery. Moreover, last-mile delivery routes are not

limited to streets; they can be extended by utilizing indoor routes, providing an efficient alter-

native to human labor. To fulfill all these roles, robots must be fast and efficient on flat ground

while being able to overcome obstacles like stairs. Traditional wheeled robots cannot surmount

these obstacles effectively, and legged systems alone are inadequate in achieving the necessary

velocity and efficiency. For instance, the ANYmal robot (1) can only operate for a maximum

of 1 hour (2, 3) at half the speed of an average human walking (2.2 km/h on average (4)).

Wheeled-legged robots offer a comprehensive solution that addresses these requirements (5–

8). Our research has been dedicated to the development of a wheeled-legged robot, as depicted

in Figure 1, where actuated wheels are integrated with its legs (6). Unlike other logistics plat-

forms, this design empowers the robot to operate effectively over long distances, enabling high-

speed locomotion on moderate surfaces while maintaining agility on challenging terrains (9,10).

2

Figure 1: Urban deployments. Our control system for the wheeled-legged robot has undergone
extensive validation in various indoor and outdoor locations. The experiments took place in
Zurich, Switzerland and in Seville, Spain. (Row 1) Locomotion challenges. (Row 2) Naviga-
tion challenges; dynamic and static obstacles, complex terrains, and narrow space. (Row 3)
Locations in Zurich. (Row 4) Locations in Seville.

3

Challenges

Despite the advancements mentioned above, the autonomous real-world deployment of such

machines requires solutions for several open challenges:

1. Missing hybrid locomotion

So far, existing approaches for hybrid wheeled-legged locomotion (hybrid locomotion) build

upon simple heuristics to decide when to step and when to drive (10) or rely on pre-defined

gait sequences (11, 12). Most control strategies designed for legged robots incorporate hand-

crafted gait patterns (13,14) or motion primitives (15,16) inspired by nature, but we cannot take

observations from biological organisms for wheeled-legged robots. Determining an effective

wheeled-legged gait for each situation is not straightforward, as speed and efficiency heavily

depend on the direction of motion and chosen gait. For example, minimizing stepping can lead

to a lower Cost of Transport (COT) (10) for wheeled-legged robots, but traditional methods

for legged robots often do not consider gait switching, resulting in sub-optimal outcomes when

applied to wheeled-legged robots. Some directly optimize for COT (17, 18) and demonstrated

improved performance with gait adaptation, but the results are limited to indoor settings or

moderate terrains with robots mostly moving forward. To generate more complex motions that

combine driving and walking, trajectory optimization techniques have been utilized to directly

optimize gait and discover complex behaviors such as terrain-aware gait and skidding (9, 19).

However, these methods are computationally expensive and often rely on close-to-optimal ini-

tialization. Additionally, some of these approaches prioritize computational efficiency at the ex-

pense of model accuracy, such as by neglecting the dynamics of wheels, leading to sub-optimal

performance on the real robot.

4

2. Mobility-unaware navigation

Urban environments consist of a significant portion of flat and open areas that require efficient

high-speed traversal to cover large distances. At the same time, it is bristled with obstacles like

stairs and uneven terrain. To achieve speed, efficiency, and obstacle negotiation capabilities, a

navigation algorithm must consider the characteristics of hybrid locomotion. This understand-

ing is crucial for issuing commands that optimize efficiency on flat terrain while maintaining

agility when faced with obstacles. Many existing approaches (20, 21) define navigation costs,

such as traversability (21, 22), independently of the robot’s whole-body state. These methods

often rely on sampling-based planning using estimated cost maps. Therefore, these approaches

have limited capability to account for low-level locomotion behaviors, such as tracking error

variations based on terrain, commanded velocity, or gait. Consequently, they may result in

frequent turning and stepping actions that can decrease efficiency.

In addition to the previous points, the higher speed capabilities of wheeled-legged robots

introduce the need for faster reaction times, which raises safety concerns and calls for the de-

velopment of more responsive systems. State-of-the-art sampling-based planners designed for

legged robots typically take several seconds to compute a path (20). However, when operating at

speeds of multiple meters per second, relying on such planning methods would necessitate long

foresight and could result in delayed decision-making. In dynamic environments or situations

involving human presence, ensuring safety requires faster and more frequent decision-making

capabilities than what traditional planning methods can provide.

3. Orchestration of too many sub-modules

Attaining autonomy in robotic systems poses a significant challenge that necessitates the seam-

less integration of various sub-modules. Team Cerberus undertook the development of an au-

tonomy system for a classic legged robot during the DARPA Subterranean Challenge (2). The

5

endeavor involved careful engineering of individual components that play pivotal roles in the

robot’s autonomy. These components encompassed global navigation planning, state estima-

tion, traversability estimation, local navigation planning, path following, and locomotion con-

trol. By carefully designing and integrating these individual modules, the legged robot achieved

an autonomy system capable of tackling the challenges posed by the DARPA Subterranean

Challenge.

In this context, our work focuses particularly on enhancing the coordination of local nav-

igation and locomotion control, a critical subset of the autonomy system. In this aspect of

autonomy, Team Cerberus incorporated multiple modules - traversability estimation, local nav-

igation planning, path following, and locomotion control. The inter-module communication in

current systems is largely guided by heuristic methods, which can limit the overall system’s

effectiveness and adaptability.

Smooth trajectories and robust operation often hinge on these engineered heuristics. This

issue becomes evident in commonly observed behaviors, as reported in Tranzatto et al. (2),

where robots frequently pause midway through a path to re-plan or exhibit zigzag motion while

following a given path. Such discontinuous or oscillatory behavior can compromise efficiency

and hinder the robot’s ability to effectively respond to complex scenarios. In some cases, navi-

gation failure may occur when computed navigation paths are not accurately followed (20). To

address these challenges, a holistic approach is required to develop efficient and robust control

systems that integrate multiple sub-modules.

Contributions

In this work, we tackle the three key challenges faced by wheeled-legged robots when aiming

for autonomy in complex and dynamic environments. We present a fully integrated system

specifically designed for autonomous last-mile delivery in complex urban settings.

6

1. Hybrid locomotion control

We have developed a robust and versatile locomotion controller for wheeled-legged robots uti-

lizing model-free Reinforcement Learning (RL) techniques and privileged learning (15,23,24).

By leveraging model-free RL, which relies minimally on human intuition, we achieve a highly

performant locomotion controller capable of making decisions regarding the gait and smoothly

transitioning between walking and driving modes. To train our controllers, we utilize simulation

environments and employ privileged learning. During the training, an agent utilizes additional

information not available during the deployment phase to enhance the model’s performance. In

our approach, we employ the robot’s motion (e.g., velocity and acceleration), terrain proper-

ties, and noiseless exteroceptive measurements as privileged information. During deployment,

the final policy only relies on raw measurements from Inertial Measurement Unit (IMU), joint

encoder readings, and noisy exteroceptive mapping, similar to the approach presented by Ji et

al. (25), minimizing the use of heuristics for noise filtering and eliminating the need for state

estimation for orientation and velocity estimates. This approach results in enhanced robustness

when operating on challenging terrains and reduces the number of failure points in terms of

locomotion control.

2. Mobility-aware navigation planning

The primary technical contribution of this work lies in the development of our learned high-level

controller (HLC). This controller tightly integrates local navigation planning and path following

with the hybrid locomotion controller described in the previous paragraph. This integration is

achieved using a Hierarchical Reinforcement Learning (HRL) framework and our new method

of training a navigation policy using pre-generated navigation graphs in simulation.

Training a HLC with the low-level controller (LLC) in the loop, HRL ensures the navigation

planner fully aware of various characteristics of the locomotion controller, including tracking

7

behavior, gait phase, joint trajectories, latent embedding, and more. By leveraging HRL, we can

effectively learn policies for solving tasks that can be decomposed into sub-tasks, making it an

ideal approach for integrating the navigation planner, path follower, and locomotion controller.

HRL ensures seamless coordination between these modules, leading to improved overall per-

formance in complex real-world scenarios that involve challenging terrain, as well as static and

dynamic obstacles.

We adopt the concept of “Navigation Graph” from computer games (26, 27) to provide

solvable yet challenging navigation problems to the agent during training (see Fig. 2). The

terrain is created using a procedural content generation algorithm called Wave Function Col-

lapse (WFC) (28), and each terrain comes with a graph that defines feasible paths and safe areas.

The training environment offers a diverse array of navigation challenges, such as detours, dy-

namic obstacles, rough terrains, and narrow passages. As detailed in the method section, we

combine different obstacles in a controlled manner and reward RL agents for following the

shortest path towards the goal point during training. This approach enhances performance in

comparison to policies trained with randomly placed obstacles and goals.

3. System integration for large-scale navigation

The two-level hierarchy comprising the mobility-aware navigation planner (HLC) and hybrid

locomotion controller (LLC) is integrated into a complete system for urban navigation. This

two-level hierarchy replaces the conventional assembly of modules including traversability es-

timation, local navigation planner, path follower, and locomotion controller, along with the

intermodule communication layers. The outcome is a streamlined and more robust navigation

system, simplifying the complexities associated with traditional autonomy approaches.

We introduce city-scale global navigation and localization by leveraging pre-mapped digi-

tal twins. To create this digital twin for a new campus or city district, we use an off-the-shelf

8

reality capture device to generate georeferenced point cloud data. Based on this data, a global

navigation graph is constructed, incorporating human input. Notably, the navigation graph only

necessitates sparse waypoints at each intersection, as our hierarchical controller effectively han-

dles obstacles encountered between these waypoints. During the robot’s deployment, it local-

izes itself in relation to the reference point cloud using its LiDAR, IMU, and kinematics. With

this setup, the robot can be provided with a single GPS goal, and it autonomously navigates

toward the target location. This integration of city-scale global navigation, localization, navi-

gation planning, and hybrid locomotion control enables efficient and autonomous navigation in

urban environments.

Our system has undergone extensive validation through large-scale real-world deployments

in urban environments, including Zurich (Switzerland) and Seville (Spain). In Fig. 1, we present

challenging scenarios for both locomotion and navigation during our experiments, showing a

diverse range of indoor and outdoor locations where our system was rigorously tested. These de-

ployments serve as compelling demonstrations of the efficacy of wheeled-legged quadrupedal

robots in achieving autonomy in complex and dynamic environments. During these deploy-

ments, our robot successfully completed kilometer-scale autonomous missions in urban set-

tings, showcasing its ability to adapt its gait based on the situation and navigate smoothly

and rapidly across various terrains and obstacles. These environments encompass wide-open

outdoor spaces, challenging obstacles such as steps and stairs, transitions between indoor and

outdoor environments, and multi-level indoor deployment. One noteworthy aspect is the high

generalization capabilities of our robot, allowing it to effectively tackle dynamic and complex

obstacles, even in cases where reference paths are obstructed.

Overall, our research underscores the significant potential of wheeled-legged robots for

achieving robust autonomy in complex and dynamic environments. It emphasizes the impor-

tance of developing tightly integrated and robust control systems to enable fast and efficient

9

navigation. Furthermore, by showcasing our real-world use case, we provide a broader con-

text for this research and assess the feasibility of wheeled-legged robotic solutions and HRL in

large-scale navigation, with potential applications in last-mile delivery and beyond.

System Overview

Figure 2 provides an overview of our system. As depicted in Fig. 2A, our robot is equipped

with multiple payloads, including three LiDARs, an RGB stereo camera at the front, a delivery

box, a 5G router, and a GPS antenna. They serve various purposes such as localization, terrain

mapping, and human detection, contributing to the safety layer. We integrated an RGB camera

with high-frequency object detection capabilities because lidar-based terrain mapping does not

capture dynamic obstacles well. This allows for real-time tracking of people within a range

of 20 meters. We add an offset to the elevation map using this information to create a buffer

zone (Figure 4E). We provide more implementation details in supplementary section S2.

Our primary focus in this work is the system illustrated in Fig. 2B. Given a global navi-

gation path, represented by a sequence of graph nodes, we extract two waypoints, denoted as

’WP1’ and ’WP2’. Taking inspiration from the pure-pursuit tracking algorithm (29), we set two

intermediate waypoints by interpolating between the robot’s current position projected onto the

path and the subsequent graph node, with a fixed look-ahead distance.

Our robot follows the intermediate waypoints using the low-level locomotion policy (LLC)

which is commanded by the high-level navigation policy (HLC), both of which are neural net-

works trained through RL. HLC, fed with waypoints as input, generates velocity targets for

LLC at 10 Hz, which aligns with the update rate of the onboard elevation mapping (30). LLC,

in turn, generates joint position and wheel velocity commands at 50 Hz.

LLC is constructed by a Recurrent Neural Network (RNN)-based policy and builds upon

the perceptive locomotion controller by Miki et al. (16). We applied modifications to the obser-

10

Stereo camera

GPS antenna

5G router

Lidars

Actuated wheels

Delivery box

A. Robot

B. Navigation System

WP1
WP2

C. Training Environment

Possible paths Sampled path

Visited positions

Dynamic
Obstacles WP 1

Start

WP 2

IMU & Joint Encoders

Hidden state

Command
Joint pos.
Wheel vel.
Commands

Height map with safety marginTwo waypoints

Visited positions and times

Navigation
Policy

10 Hz

Locomotion
Policy

50 Hz

Elevation Mapping

Lidars Stereo camera

Human Detection

Figure 2: System overview. (A) Our wheeled-legged quadrupedal robot. (B) Overview of the
navigation system. (C) Training environment. We leverage pre-generated obstacle-free paths to
facilitate navigation learning.

11

vation and action space to improve robustness and remove engineered motion bias. Technical

details are given in the method section.

The HLC is trained in the simulation environment depicted in Fig. 2C. In every episode,

a new obstacle-free path is generated, and waypoints are defined along the path at random

intervals. The HLC processes multiple input modalities including the hidden state of LLC, a

terrain scan around the robot, and a sequence of previously visited positions with corresponding

visitation times. Instead of using standard proprioceptive observations, HLC accesses the belief

state of LLC. This latent state captures environmental information such as terrain properties

and disturbances, as supported by (15, 16). Additionally, HLC processes 20 previously visited

positions recorded at 50 cm intervals. They span the distance of up to 10 m, approximately

the usual waypoint spacing. The history allows HLC to make informed decisions based on the

robot’s prior navigation experience.

Results

We conducted autonomous navigation missions in different urban environments. These exper-

iments took place in Zurich, Switzerland, and Seville, Spain. The capability of our system is

summarized in Movie 1. Additionally, we show one full mission in supplementary video S1 to

demonstrate the scale of each experiment.

Kilometer-Scale Autonomous Deployments

Fig. 3 provides a summary of our mock-up delivery mission conducted in Glattpark, Zurich.

Our robot covered a total distance of 8.3 km with minimal human intervention. The figure

highlights the key challenges and outcomes of the mission.

We first show our workflow in Fig. 3A. To begin, we employed a handheld laser scanner

to capture dense color point clouds of the experimental area. The scanning process took ap-

12

https://drive.google.com/file/d/1rxRCTH-Sjz1XbW1CVF97yIO5lOKopnwj/view?usp=drive_link
https://drive.google.com/file/d/1_OtBlqvTuwmsWIIpKOnPTJpco9KOPFKe/view?usp=drive_link

B. Mission Overview

C. Challenges

A. Workflow
i. Scan the environment ii. Process point cloud iii. Create navigation graph iv. Graph planning & Follow

345 m

2
4
5
 m

Laser scanner

i. Visited positions ii. Navigation Graph

iii. Speed and Efficiency

Visitation Frequency
0.0 1.00.5

0 20 40 60m
Scale 1:2500

Start or Goal point

© CNES, Spot Image, swisstopo, NPOC, public.geo.admin.ch

i. Pedestrians

ii. Obstacles and Terrains

Data collection time: ~ 90 mins Human-designed graph

Anymal-C Wheeled Anymal-C

0.5 1.0 1.5 2.0 0.0 0.5

Speed (m/s) Mech. COT

1.68 0.55 0.17 0.34

D. Interventions
i. Safety stop

ii. Untraversable path

iii. Localization fail

Poles Irregular steps High steps

Mixed surfaces Mixed surfaces Stairs

Figure 3: Large scale autonomous navigation experiment at Glattpark, Zurich. (A) Workflow:
Offline preparation of the experiment. (B) Outcome of multiple missions. (C) Challenges faced
by the robot. (D) Situations requiring interventions.

13

proximately 90 minutes to cover a 245 m x 345 m urban area. Subsequently, we georeferenced

the point cloud and the data was converted into a mesh representation, facilitating the creation

of a navigation graph and the placement of goal points by a human expert (see Fig. 3A-iii and

Fig. 3B-ii). The purpose of the navigation graph is to provide topological guidance and to

indicate social preferences, like avoiding landscaping and private property.

Selected goal points are sent to the robot via mobile network and the reference path is com-

puted onboard using a shortest-path algorithm (31). The resulting path is converted into robot-

relative coordinates for our navigation policy using LiDAR-localization in the pre-scanned point

cloud map. Note that the point cloud is purely for localization and is not otherwise used for

navigation (32). We have found this localization method to be more robust among high-rise

buildings than a GPS-based approach.

Fig. 3B-i illustrates the paths traversed by our robot during multiple long-distance experi-

ments, each lasting more than 30 minutes. Throughout these experiments, we manually selected

13 distant goal points to maximize coverage of the experimental area. This setup required the

robot to navigate diverse obstacles in order to reach each goal point successfully. Major chal-

lenges are shown in Fig. 3C. Our learned hierarchical controller played a crucial role in enabling

the robot to overcome these. By changing gait and modulating speed adaptively, the navigation

controller achieved robust and responsive navigation.

Fig. 3B-iii presents histograms of the speed and mechanical COT while the robot was in

motion. We define mechanical COT as

COTmech =
∑

all joints

[τ θ̇]+/(mg|vbxy|) ,

where τ denotes joint torque, θ̇ is joint speed, mg is the total weight, and |vbxy| is the horizontal

speed of the robot’s base. This quantity represents positive mechanical power exerted by the

actuator per unit weight and unit locomotion speed (6, 15).

14

Our robot achieved an average speed of 1.68 m/s with a mechanical COT of 0.16. In com-

parison, we provide data on the average speed and COT of one ANYmal robot which primarily

traversed flat and urban terrains during the DARPA Subterranean challenge (2)1. Our robot

demonstrated three times the speed with a 53% lower COT. Note that we only compared the

output mechanical power. Other significant factors contributing to energy loss, such as heat

loss and mechanical loss from the actuators’ transmission, also come into play during constant

walking motions.

The improvement is mainly attributed to the driving mode, which evenly distributes weight

across all four legs, keeping leg joints relatively static. Constant stepping leads to concentrated

loads on fewer legs, requiring higher joint torques and speeds. During driving, joint actuators

contribute almost zero mechanical COT (≈ 0.01). Compared to a typical ANYmal robot during

locomotion, our robot’s wheels exert about 1.2 times the total mechanical power, while achiev-

ing 3.4 times higher locomotion speed on average. Upon evaluating the average
∑
τ 2 solely

for leg joints, our robot exhibits a 16 % lower value, despite being both heavier (≈12 kg) and

faster. This quantity is directly related to the heat loss (33, 34).

Fig. 3C shows the major challenges encountered by our robot, including pedestrians, vari-

ous obstacles, and non-flat terrains. Our robot demonstrated the capability to navigate around

walking pedestrians in various situations, even on slopes or stairs, as depicted in supplementary

video S1. Additionally, our robot exhibited the ability to handle thin obstacles, such as the pole

shown in the first image of Fig. 3C-ii, as well as various discrete terrains like steps and stairs.

HLC and LLC are trained to minimize COTmech and
∑
τ 2. As a result, the robot mostly

drives on flat terrain. However, when encountering uneven surfaces, the robot dynamically

switches to a stepping gait. Importantly, this gait switching is learned without any handcrafted

heuristics like Central Pattern Generator (CPG)s or predefined gait sequences. Furthermore,

1ANYmal 4 in this video: https://youtu.be/fCHOU-fw2c0?list=PLE-BQwvVGf8HJYuIH85–ul9DEVDvmt9B

15

https://drive.google.com/file/d/1_OtBlqvTuwmsWIIpKOnPTJpco9KOPFKe/view?usp=drive_link
https://drive.google.com/file/d/1_OtBlqvTuwmsWIIpKOnPTJpco9KOPFKe/view?usp=drive_link

our controller demonstrates robustness in handling various surfaces, including grass, sand, or

gravel, which can be attributed to the privileged training of the LLC (15).

We intervened during the mission in three circumstances, presented in Fig. 3D. Firstly, there

were instances where children were in the robot’s path. Although our navigation module would

have most likely safely navigated around children, as it did for adults, we prioritized safety and

stopped the robot proactively.

Secondly, we encountered situations where the waypoints were located within untraversable

regions. Tall grass had grown on a trail in the time between creating the navigation graph and

performing experiments. Consequently, it presented an obstacle in the local height map used

for navigation. The robot safely stopped in front of the tall grass and we manually triggered

global re-planning to go around the obstruction.

Lastly, we encountered challenges with localization in geometrically degenerate environ-

ments, such as long corridors. This meant that the reference path became invalid and provided

infeasible, potentially hazardous waypoints. Our robot’s controller was still able to operate

safely by relying on onboard local terrain mapping, but was unable to reach the goal point until

localization was recovered.

Local Navigation

In Fig. 4, we present example scenarios that best show the local navigation capability of our

system. The sequence of these scenarios can be viewed in supplementary video S2.

In the first case (Fig. 4A), we show the exploratory behavior when the robot encounters a

blocked path. The robot goes reverse or move along the wall, searching for an opening until it

finds the stairs leading to the final waypoint. The robot’s explicit position memory allows it to

reason about its previously visited positions and navigate through complex paths.

Fig. 4B shows our robot’s ability to navigate narrow corridors. It successfully maneuvers

16

https://drive.google.com/file/d/1ehIv2LKDW7J4xKj3PbyiIYSPenV-5ONR/view?usp=drive_link

A. Detour

Goal

1

Position history

2 3 4

B. Narrow space

Goal
1 3

D. Step down

C. Complex obstacle

Goal

Stairs

Goal

1

1

Too high

Option 1 (2) 1-3Option 1 (3)

2

Option 2 (2) Option 2 (3)

4

Option 1 (4)

Low enough

Option 2 (4)

2

E. Human safety

Goal

1

Human detected

Detected human position2 3

50 cm

3

30 cm

Figure 4: Obstacle negotiation. (A) Navigating around blocked routes by actively exploring the
area and finding alternative paths. (B) Safely traversing a narrow space. (C) Our robot exhibits
two different ways to traverse the complex obstacle. (C, D) Our robot shows an asymmetric un-
derstanding of traversability, being able to traverse higher steps when going down. (E) Ensuring
safety around humans by incorporating additional human detection and overriding height scan
values.

17

through two doors with a human standing in-between, where the gap is as wide as the robot’s

width. The robot navigates through the narrow space without any collisions even though human

safety was not enabled in this particular case. This example shows our navigation controller’s

precision and ability to adjust its trajectory in real-time, making it well-suited for environments

with limited space and tight passageways.

We conducted a test with a complex obstacle depicted in Fig. 4C-1. The obstacle consisted

of a small staircase on one side and a step with variable height ranging from 0 to 50 cm on the

other side. When a waypoint was provided above the step, our robot showcased two different

approaches to traverse it. Initially, when the route was obstructed, the robot drove backward

and started exploring. During this phase, it could either find the stairs to climb up or continue

exploring for a feasible step height. In the second case, by driving along the step and assessing

the terrain, the robot determined a viable height of approximately 20 cm. This example shows

the effectiveness of our hierarchical controller, seamlessly adapting its gait based on the terrain,

and exhibiting versatility in navigating complex paths.

We observed that HLC has an asymmetric understanding of traversability when going up and

down the step (Fig. 4D). Specifically, the robot was able to traverse higher steps when descend-

ing, indicating that it has a more advanced understanding of the terrain compared to cost-map

approaches for traversability estimation (21, 30). These methods use symmetric traversability

maps that are independent of motion direction, whereas our approach makes decisions based on

the current terrain, the robot’s state, and the characteristic of the low-level locomotion control.

In Fig. 4E, we visualize our strategy for augmenting the static, local elevation map with

dynamic obstacles. We incorporated camera-based human detection to add a height offset in a

radius of 50 cm around individuals. As the robot encounters a person moving along its path,

HLC, trained to handle dynamic obstacles of various sizes, ensures a constant distance from the

person, allowing the robot to successfully overtake them.

18

Hybrid Locomotion

We evaluated our LLC over various real-world terrains to observe emerging gaits and assess

its robustness. We provide highlights of our locomotion experiments in supplementary video

S3. LLC adapts gaits depending on the command velocity and terrain. We tested the policy

on various real-world terrains, as illustrated in Fig. 5. Our previous Model Predictive Control

(MPC)-based controller (10) lacks robustness and cannot operate in the environments depicted

in Fig. 5. Additionally, our controller reached the peak speed of 5.0 m/s on flat terrain. The

hardware limit allows for a maximum speed of 6.3 m/s, which is determined by the maximum

joint speed of 45 rad/s multiplied by the wheel radius of 0.14 m.

Fig. 5AB presents distinct behaviors that are influenced by the terrain. When traversing

a large discrete obstacle (High step), the robot displays an asymmetric gait combining creep-

ing (35) and driving. Conversely, on bumpy terrain where the height deviations are comparable

to the wheel’s radius (Uneven ground), the robot leverages the wheels to move forward. The

policy adjusts the reach of each leg to maintain the main body’s stability and keep the wheels

in contact with the terrain, acting as an active suspension. When climbing stairs or steep hills,

the robot trots like a normal point-foot quadruped (16) (Stair and Steep uphill). Depending on

the terrain conditions, such as slope or friction, the gait frequency may vary. Additionally, the

policy adjusts the main body’s height based on the situation. For instance, when descending a

slope, the policy lowers the body height to enhance stability and prevent tipping over.

In Fig.5C, we present two scenarios involving high discrete obstacles. In Fig. 5C-i, we com-

manded our LLC to drive down a table approximately 60 cm high. As the front legs descend,

the robot stretches down its front legs and crouches the hind legs to maintain a level main body.

Once the front legs touch down, the front wheesl roll forward to rebalance. In Fig. 5C-ii, we

show our robot traversing a block of approximately 40 cm high. In the middle of the block (sec-

ond figure), none of the wheels are in contact with the ground. Then the robot crawls forward

19

https://drive.google.com/file/d/18b9aM2n9kmzCmDSDA0a5J421Bdm-_9kO/view?usp=drive_link
https://drive.google.com/file/d/18b9aM2n9kmzCmDSDA0a5J421Bdm-_9kO/view?usp=drive_link

0.00 s

High step

0.00 s

0.00 s

Uneven ground

Stairs

Steep uphill

Steep downhill

0.00 s

0.00 s

0.80 s

0.75 s

0.60 s

0.75 s

0.50 s

1.15 s

1.50 s

1.45 s

1.50 s

1.00 s

2.65 s

2.25 s

2.20 s

2.25 s

1.50 s

LF
RF
LH
RH

LF
RF
LH
RH

LF
RF
LH
RH

LF
RF
LH
RH

LF
RF
LH
RH

0.0 3.0time(s)

A.Motion sequences B. Gait

C. Challenging obstacles
i. Large step down

ii. A block

60 cm

1

1

3

3

D. Quantitative Evaluation

ii. Max. slope (degrees)

forward speed (m/s)

Going downGoing up

i. Max. step height (m)

forward speed (m/s)

0.2

0.4

0.6

0.5 1.0 1.5 2.0

Knee collides

0.25 0.5 0.75 1.0

Stepping

Driving
26

28

30

32

2

2 Uses the knee

Figure 5: Different behaviors on various terrains. (A) Terrain types and motion sequences. The
robot is moving from left to right following target velocity commands given by the joystick (up
to 2 m/s). (B) Corresponding wheel contact sequences. (c) Two challenging discrete obstacles.
(D) The maximum step height and slope that the LLC can overcome with a given command
velocity.

20

with its knees until one of the wheels regains contact. This example shows the advantage of

using model-free RL (36).

Quantitative evaluation of the locomotion performance is presented in Fig.5D. In the first

plot, we present the maximum traversable height of the step depending on the command speed.

Our robot can traverse higher steps when descending compared to ascending. This observation

aligns with the results shown in Fig.4CD, where our HLC avoids high steps and instead chooses

to detour to avoid knee collision and ensure safety. In the second case, we tested LLC on a slope

with fixed friction coefficient of 0.7 in simulation.

The robot was commanded with a fixed linear velocity to ascend the slope, and success was

determined by its ability to climb up for 2 meters. We observed that the stepping behavior, as

depicted in Fig. 5A, emerged only on steeper slopes with command speeds over 0.5 m/s. With

the stepping gait, the robot was able to climb steeper slopes. This analysis demonstrates the

complex characteristics of our LLC in terms of gait patterns and traversability. Conventional

navigation planning and path-following approaches would struggle to identify and adapt to such

complexities.

Comparison to a Conventional Navigation Approach

We compared our approach with the conventional sampling-based navigation planner by Well-

hausen et al. (4). This local navigation planner, used by the Cerberus team in the Subterranean

Challenge (2), is designed for the autonomous deployment of legged robots. For both methods,

we used the same LLC.

We conducted experiments in a point-goal navigation setup, as depicted in Fig.4A. The area

was scanned with a laser scanner to create a simulation environment, shown in Fig.6A, with

fixed start and goal points.

Fig. 6B illustrates the field of view of our HLC and the baseline. To accommodate the

21

A. Experimental setup

D. Failure cases

E. Performance

GoalStart

5 m 5 m

C. Trajectories

iii. Baseline:

 occlusion & delay

Late
Replanning

BaselineOurs1

i. Ours:
 full memory

Stops
Exploration Repeat

ii. Ours:
 w/o memory

Ours2

iv. Baseline:

 missing target pose

Large
Tracking
Error

Collision

i. Failure (%) ii. Collision (%) iii. Planning time (s) iv. Velocity tracking (m/s)

Ours

Ours w/o memory

BaselineError (m/s)

100

50

0

30

80

50

0 0

100

B
et

te
r

B. Field of view
Ours

3 m

3 m

1.5 m

3.5 m

Baseline

Occluded

1 2 1 2

Figure 6: Comparison to a conventional approach in a point-goal navigation setup. (A) Experi-
mental setup. (B) Field of view comparison between different methods. (C) Trajectories of the
two methods. Our method displays two distinct trajectories depending on the initial exploration
direction. (D) Failure cases. (E) Quantitative evaluation of performance. The experiments were
repeated 10 times per method.

22

limitations during physical deployment, we limit the range of the map to 3.5 meters in both

x and y directions. This decision is particularly important when the robot is moving at high

speeds, reaching up to 2 m/s. Using a larger map size significantly slows down the elevation

map update and results in high delay and empty spots in the map.

Fig. 6C presents the trajectories of both approaches that successfully reached the goal. Our

approach demonstrates a tendency to explore the environment and discover an opening at the

staircase, as discussed in the previous section. In contrast, the baseline consistently collides due

to the occlusion and delay issue, which will be further explained below.

Fig.6D presents failure cases. Our approach sometimes gets stuck during exploration when

the position memory buffer is full. We also trained our approach without memory, resulting in

repetitive behaviors and difficulty escaping local minima (Fig.6D-ii).

The baseline method faced two challenges: occlusion handling and tracking error of the

locomotion controller. While several heuristics can help mitigate the occlusion problem, the

baseline method’s ability to handle changing situations is limited due to the delay in re-planning.

Concerning the second issue, most existing methods assume perfect tracking; however, the

actual locomotion controller experiences delays and tracking errors. Fig. 6D-iv illustrates this

issue, where distant pose targets lead to high-velocity commands that prevent the robot from

stopping at the next waypoint, resulting in collisions. This problem becomes more pronounced

when dealing with fast-moving robots or when deploying on rough terrain.

In the quantitative analysis shown in Fig. 6E, Our approach with full memory showed the

lowest failure rate. Our method without memory exhibited the highest failure rate. Notably,

only our approach achieved a collision-free path, demonstrating the accurate steering capability

of our navigation policy while respecting the capabilities of the locomotion policy.

The comparison of the failure rate highlights the advantage of exploratory behavior in par-

tially observable scenarios. Unlike the sampling-based baseline, which is limited to exploring

23

within the provided map, our method enables the robot to dynamically explore new areas, re-

sulting in a higher success rate. Furthermore, the results obtained from ’Ours w/o memory’

emphasize the importance of the memory mechanism in facilitating effective exploration in

static environments.

Another significant benefit of our approach lies in its computational efficiency (Fig. 6E-iv).

From updating observations to inferring the neural network, our high-level controller takes only

0.34 ms on average. In contrast, depending on the complexity of the environment, the baseline

sometimes requires more than 1 s to update the navigation plan on a desktop machine (AMD

Ryzen 9 3950X, GeForce RTX 2080).

As mentioned previously, the baseline’s high failure rate can also be attributed to imperfect

tracking of the low-level policy. Fig. 6E-iv presents a histogram illustrating the tracking error of

trajectories from the baseline, which shows an approximately 88% higher on average compared

to our approach. Notably, the baseline exhibits a single high peak in the histogram, which

occurs when there are discrete changes in the command velocity to the LLC or when the robot

is commanded too close to obstacles and LLC refuses to follow the command. In contrast, our

high-level controller, trained in conjunction with the low-level controller, demonstrates well-

distributed tracking error statistics with consistently low tracking error.

Discussion

The presented wheeled-legged robot system demonstrates significant advancements in achiev-

ing autonomy and robustness in complex urban environments. The integration of mobility-

aware navigation planning and hybrid locomotion contributes to the system’s ability to navigate

challenging terrain and obstacles while ensuring efficient and fast navigation.

Our experiments validated the effectiveness of the proposed system in real-world scenarios.

Our wheeled-legged robot successfully completed kilometer-scale autonomous missions in ur-

24

ban environments. It successfully navigated through various obstacles such as stairs, irregular

steps, natural terrain, and pedestrians.

Our results demonstrate several notable advantages over conventional navigation planning

approaches. Firstly, our hierarchical controller actively explores areas beyond its current per-

ception. Unlike traditional sampling-based approaches, our method enables the robot to dy-

namically explore new areas, improving the success rate. The integration of memory allows the

robot to reason about previously visited positions, enhancing its decision-making capabilities

in complex environments.

Another major advantage of our approach is its responsiveness. The controller dynami-

cally reacts to unperceived obstacles and effectively navigates through urban environments with

pedestrians, continuously adapting to changing situations. The incorporation of real-time data

and fast computation enables the robot to leverage up-to-date information, enhancing its ability

to navigate challenging terrains and avoid obstacles.

Moreover, the presented hybrid locomotion controller exhibits robustness and versatility

in traversing various rough terrain. The adaptive gaits observed in our experiments, such as

the asymmetric gait for large discrete obstacles, wheel-based locomotion for bumpy terrain,

and trotting gait for stairs and steep hills, demonstrate the controller’s capability to efficiently

traverse diverse terrains.

However, there are still important aspects to consider for future improvements. One such

aspect is the incorporation of semantic information into our system. Currently, our system

primarily relies on geometric information for navigation, with minimal utilization of semantic

information (to adjust the height map for human safety). More advanced scene understanding,

such as pavement detection or visual traversability estimation (37), will allow the robot to make

more informed decisions during navigation. This is exemplified by the work of Sorokin et

al. (38), where they suggest enhancing a robot’s ability to visually differentiate terrains, leading

25

to safer urban navigation.

Another important requirement is fast perception with a wide field of view. Our HLC relies

on a limited field of view of up to 3 meters to the front of the robot. This is inherently limited

by using elevation mapping (30). Our system’s perception capabilities, although effective for

the demonstrated scenarios, may present limitations for faster missions or in environments with

high uncertainty. Our robot hardware is capable of locomotion up to 6.2 m/s, but we couldn’t

demonstrate the maximum speed during autonomous deployment due to the delayed and limited

mapping. Removing terrain elevation mapping and relying on the fast raw sensory stream would

be a promising direction for future improvement.

In conclusion, the presented wheeled-legged robot system demonstrates the potential for

achieving robust autonomy in complex and dynamic urban environments using data driven ap-

proaches. While challenges remain, such as improving perception capabilities or reducing hu-

man labor in map creation, our research paves the way for future advancements in the field of

wheeled-legged robots and autonomous urban applications.

Overall, our research contributes to the growing body of knowledge on wheeled-legged

robots and autonomous navigation in urban environments. The presented system’s robustness,

adaptability, and efficiency hold great promise for transforming last-mile delivery and address-

ing the challenges of urban mobility.

Materials and Methods

Our main objective, as depicted in Figure 2B, is to develop a robust control system that en-

ables the robot to navigate along a predefined global path consisting of a sequence of waypoints

spaced approximately 2 m to 20 m apart. The global path can be generated using a graph plan-

ner (39) or defined manually. It is important to note that while the global planning aspect is

essential for the overall navigation process, it is outside the scope of this work.

26

Due to space constraints, a comprehensive validation of our method is presented in the

supplementary section S4 and S5.

Overview of the Approach

Inspired by the existing literature (40, 41), in which hierarchical decomposition of complex

tasks enables faster learning and higher performance, we employ HRL to extend our previous

learning-based velocity tracking controller for quadrupedal robots (16) to waypoint tracking

navigation. In this section, we present an overview of our method, starting with the definition

of the hierarchical structure.

Defining Hierarchy

To tackle the waypoint tracking navigation problem, we adopt the two-level HRL framework

inspired by (42). Existing literature offers different hierarchical structures, which can be cate-

gorized into three distinct approaches:

1. End-to-End: This approach involves a single policy that learns both locomotion and nav-

igation behavior in an end-to-end manner.

2. Latent goal: Some existing works suggest using learned latent sub-goals for HRL (43,44)

for simplicity and flexibility. There is no need to explicitly define intermediate goals, and

the task assignment within the hierarchy is learned.

3. Explicit goal: The low-level policy handles the locomotion, such as (16), and the high-

level policy (or a planner) solves navigation by commanding sub-goals. The high-level

policy can also define gait parameters (e.g., trot, walk, driving). Locomotion controllers

with predefined gait sequences (9, 13, 45) require an additional gait command.

27

We explicitly define sub-goals for practical reasons (option 3). Although the first two ap-

proaches may offer simpler implementations, explicitly separating the controllers provides ben-

efits. Firstly, it allows us to develop low-level controllers independently, enhancing the inter-

pretability of the behavior. Secondly, we leverage widely used intermediate representations in

legged robotics, such as gait and target velocity. This design choice enables us to reuse the

trained low-level policy across various high-level applications, promoting versatility and adapt-

ability in our system.

While our final high-level policy only outputs the velocity command, we also explored

commanding gait patterns similarly to Tsounis et al. (46). The experiment is described in sup-

plementary section S5.

Training Procedure

Our training procedure involves training two policies: a low-level policy and a high-level policy.

Here is an overview of the training procedure:

1. Low-level Policy Teacher Training: We begin by training the teacher policy for the low-

level locomotion policy. The teacher policy is trained to follow random velocity targets

(and optionally gait parameters) on rough terrains using a Proximal Policy Optimization

(PPO) algorithm (47). In this step, privileged information, including the robot’s motion,

terrain properties, and noiseless exteroceptive measurements, is utilized to enhance the

locomotion performance and convergence of the policy.

2. Low-level Policy Student Training: We then train the student low-level policy, which is

deployable on the robot. The student policy observes a sequence of noisy and biased IMU

measurements, joint states, and noisy height scans as input, instead of directly observing

the privileged information. By imitating the teacher policy and utilizing an RNN-based

28

architecture (16), the student policy learns to extract meaningful features from the tem-

poral data and performs robust locomotion.

3. High-level Policy Training: During high-level policy training, we use the trained student

low-level policy as a fixed component and focus on training the high-level policy. The

high-level policy is trained using a PPO algorithm. The training data is generated in our

custom-built simulation environment that provides feasible paths and dense reward to the

learning agent. This approach is further explained in the next section.

4. Optional Fine-tuning: An optional phase of alternating training can be conducted for

both policies to enhance their coordination and potentially improve motion smoothness.

However, our experiments showed only marginal enhancements from this step. Therefore,

we decided to skip the alternating training phase for our final policies.

Graph-guided Navigation Learning

Navigation graphs, commonly employed in computer games for autonomously navigating AI

characters in synthetic environments (26, 27), play a crucial role in our navigation learning

approach. Inspired by game development, we utilize pre-generated navigation graphs to define

initial states, assign feasible paths, and design the reward function during the training of our

high-level policy.

World Generation

The automatic terrain generation method, illustrated in Fig. 7, establishes connectivity between

different areas of the terrain (tiles), resulting in a navigation graph that defines viable paths. For

example, tiles with stairs in x-direction are exclusively connected to floor tiles along the x-axis.

To generate diverse and realistic terrain layouts, we utilize the WFC algorithm. The WFC

algorithm automatically composes different terrain features, including stairs, floors, and other

29

Stairs
Floor 0
Floor 1

Example

B.Navigation EnvironmentA. Terrain Features

New pattern Connectivity

+

StairsGround

Create height map Plan an obstacle-free path and
spawn robot and dynamic obstacles

F
iltered

p
aram

eters

Generate a new tile pattern using
Wave Function Collapse algorithm

1 2 3

Figure 7: Procedural generation of the navigation world. (A) Filtered parameterized terrain
during low-level policy training. (B-1) Generating new tile maps and connectivity graph using
the Wave Function Collapse algorithm. (B-2) Created height map terrain with filtered floor
features and stair parameters. (B-3) Randomly generated navigation path between two nodes
provides waypoints during training. Dynamic obstacles (white boxes) are added randomly.

obstacles. By simultaneously creating connectivity between the tiles, we obtain a navigation

graph.

The WFC algorithm divides an input tile map (referred to as ”Example” in Fig. 7B) into

smaller chunks and rearranges them to create new N by N patterns. This procedural generation

approach enables us to generate a wide variety of navigation worlds with different styles of

corridors, rooms, and obstacles.

In our approach, we define three types of tiles: Stair, Floor 0, and Floor 1. We provide their

relationship to the WFC algorithm along with example images. The WFC algorithm calculates

the probability of each tile type and determines the connectivity to neighboring tile types. By

randomly generating tile maps based on these probabilities, we compose the existing terrain

features, resulting in varied and realistic training environments. The parameters for the parame-

terized floor and stairs are selected during the low-level policy training using the terrain filtering

algorithm by Lee et al. (15) (see supplementary section S6).

30

Using Navigation Graphs for RL

We generate random feasible paths for training using the pre-generated navigation graphs (con-

nectivity graph). We employ Dijkstra’s algorithm (31) to find a path between two randomly

selected nodes within the graph. Along the graph edge, we sample waypoints by interpolating

between the robot’s current position projected onto the path and the subsequent graph node,

with a fixed look-ahead distance. The distance is sampled uniformly from [5.0, 20.0] m ev-

ery episode. At the end of each path, we include the last node twice as two waypoints. This

approach ensures that the agent has clear instructions on the desired trajectory and endpoint.

During the initial training phase, a positive reward is given when the agents successfully

navigate along the planned path on the graph. The reward gradually diminishes, and we let the

policy train with a sparse reward at the end. The reward function is defined as follows.

rh,dense :=

{
1.0 |ewp1| < 0.75

clip(v · êwp1 , 0.0, vthres)/vthres otherwise
(1)

where ewp1 = probot − wp1 and vthres = 0.5. probot and wp1 denote the positions of the robot

and the nearest waypoint, respectively.

This reward mechanism encourages the robot to follow a planned navigation graph, min-

imizing the geodesic distance to the final goal. The path entails detours, rather than simply

moving towards a waypoint. This approach challenges agents with paths that incorporate tight

gaps and sharp turns, thereby pushing their capabilities.

Dynamic Obstacles

In addition to the static structure generated by the WFC algorithm, we introduce dynamic obsta-

cles during the training. They are randomly placed within the environment and move towards

the robot.

The dynamic obstacles are represented by white boxes in Fig. 7B-iii, and their number,

31

positions, and velocities are randomly generated at the start and during each episode. These

obstacles move towards the robot at speeds ranging from 0.1 m/s and 0.5 m/s.

High-level Policy Details

This section is focused on detailing the Markov Decision Process (MDP) governing πhi, en-

compassing observations and actions. Detailed information about the reward function can be

found in supplementary section S3.

Observation

The observation space of πhi is defined with three different modalities:

1. Exteroceptive observation: The exteroceptive observation follows the definition by Miki

et al. (16). We sample height values around the robot from the 2.5D elevation map (30).

Due to limited memory and computational resources onboard, the robot’s field of view is

3 meters to the front and 1.5 meters in other directions. We prioritize shifting the scan

pattern towards the front due to the farther perception range afforded by the forward-

facing RGB camera. In addition, the exteroceptive observation includes two previous

scans taken at 0.1 s and 0.2 s before to account for the dynamic environments.

2. History of position and time information : To aid πhi in exploration, we introduce an

additional position buffer. We save the visited positions in the world frame at regular in-

tervals of 0.5 meters, along with the corresponding visitation time. The time information

includes how many time steps the robot stayed in each position. The most recent 20 po-

sitions and their respective time information are provided to the high-level policy in the

robot frame.

3. Waypoint and previous actions: In addition to the aforementioned perception information,

πhi takes the two waypoints, which are extracted from the navigation graph, as input.

32

Additionally, the policy is given the positions of the two previously observed waypoints

and the three previous outputs of πhi. The previous actions assist the policy in making a

smoother command trajectory.

Exploration Bonus

During training, we encourage exploration of πhi using the explicit position buffer. This is

achieved through an exploration bonus incorporated into the reward function. The exploration

bonus, denoted as rexp, is calculated as the sum of costs C(st, wp1t , p
i
buf) over the positions in

the buffer Pbuf .

The cost function C(probot, wp1, pibuf) is defined as

C(probot, wp
1, pibuf) :=

{
0.0 |probot − wp1| < 0.75

−nibuf |probot − pibuf | < 1.0
. (2)

Here, probot represents the position of the robot, wp1 denotes the first waypoint, pibuf represents

the i-th position saved in the position buffer, and nibuf corresponds to the number of visits for

the i-th position in the position buffer.

In essence, if the robot is not close to the first waypoint and is near a position saved in the

position buffer, the agent incurs a penalty proportional to the number of timesteps it remains in

that position. This penalty encourages the agent to explore new areas and prioritize progress

towards the first waypoint.

By incorporating this exploration bonus into the reward function, we promote the explo-

ration behavior of πhi during training, enhancing the system’s ability to explore and overcome

local minima.

Bounded Action Space

Instead of the commonly used Gaussian action distribution, we adopt Beta Distribution to rep-

resent a bounded action space for the πhi, as introduced by Chou et al. (48). This offers several

33

benefits. Firstly, it allows us to define hard limits on the outputs, enhancing safety and inter-

pretability. Additionally, working with a bounded action space makes it easier to regularize the

motion and control the behavior of the agent.

Specifically, we define the bounds of HLC’s commands as follows: vx ∈ [−1.0, 2.0] m/s,

vy ∈ [−0.75, 0.75] m/s, and ωz ∈ [−1.25, 1.25] rad/s. The shift in the vx range encourages the

policy to consistently face forward during locomotion, aligning with the orientation of the RGB

camera mounted on the robot. We provide additional details in the supplementary section S8.

Network Architecture

For πhi, we employ a combination of architectures tailored for specific input types. For position

history, we utilize 1D Convolutional Neural Network (CNN) layers followed by max pooling,

similar to PointNet (49), enabling permutation-invariant processing of spatial information. The

height scan around the robot is processed using a 3-layer 2D CNN layers followed by an Multi

Layer Perceptron (MLP) layer. Other inputs and the output layer are handled by plain MLP

layers commonly used for non-spatial data processing and policy generation. For the beta dis-

tribution parameters, we use the Sigmoid function at the output layer.

Low-level Policy Details

In this section, we provide details for low-level teacher and student training. The MDP for the

low-level teacher policy inherits from Miki et al. (16), with modification to observation and

action spaces. The reward function is defined in detail in supplementary section S3, and the

details on the privileged training is given in supplementary section S7.

The low-level policy is trained to achieve velocity tracking on rough terrains generated

randomly. These terrains, designed following the approach of Miki et al. (16), are illustrated

in Fig.7A. Each terrain is generated by two to three parameters. During training, we apply the

34

parameter filtering algorithm by Lee et al. (15). Please refer to supplementary section S6 for

details. The low-level policy is commanded by linear velocity in the x and y direction, as well

as yaw rate. Linear x velocity is uniformly sampled from [-2.5, 2.5] m/s, y velocity from [-1.2,

1.2] m/s, and yaw rate from [-1.5, 1.5] rad/s. In each episode, a new command is sampled, with

a 0.005 probability of random resampling.

Observation

1. Exteroceptive Observation: For the low-level policy, we sample points around the robot’s

wheels from a circular pattern, the same as Miki et al. (16).

2. Proprioceptive Observation: The proprioceptive observation is utilized exclusively by the

student policy. It consists of measurements obtained from body IMU and joint encoders.

These measurements provide information about the robot’s body acceleration, angular

velocities, joint angles, and joint velocities. The student policy processes the sequence

of proprioceptive measurements to derive the state of the robot, e.g., pose, velocity, and

acceleration. Unlike previous works that relied on estimated pose and twist by a model-

based state estimator (16, 33, 50), we directly use the IMU measurement consisting of

linear acceleration and angular velocity as input to the recurrent student policy.

3. Privileged Observation: A privileged observation is employed during the training of the

low-level teacher policy. It encompasses various essential components, including noise-

less joint states, foot contact state, terrain normal at each foot, foot contact force, robot

velocity, and gravity vector in the robot’s base frame (16).

4. Velocity Command: 3-dimensional vector consisting of target base horizontal velocity

(2) and target base yaw rate (1).

35

Action

The low-level policy’s action is a 16-dimensional vector consisting of joint position commands

(12 joints) and wheel velocity commands (4). The joint position and velocity commands are

given to the PD controller of each actuator.For a more detailed explanation of the simulation of

the actuators, we refer the readers to supplementary section S2.

In contrast to our prior work (16), we discard the use of the CPG in the action space to

remove any engineered bias in the motion. For a detailed comparative study of various action

spaces, refer to supplementary section S5.

Network Architecture

The low-level teacher policy is implemented as a plain MLP network, while the low-level stu-

dent policy adopts a Gated Recurrent Unit (GRU) architecture by Miki et al. (16).

36

Supplementary materials

Section S1. Nomenclature

Section S2. Implementation Details

Section S3. Reward Functions

Section S4. Comparison to Related Works and Validation of Our Method

Section S5. Comparison of Different Architectures

Section S6. Filtering Terrain Parameters

Section S7. Privileged Training

Section S8. Bounded Action Space for HLC

Table S1: Performance comparison between different navigation policies

Table S2: Hyperparameters for LLC teacher policy training

Table S3: Hyperparameters for HLC training

Figure S1: Different controllers during collision avoidance

Movie 1. Summary of contributions

Movie S1. Full mission in Glattpark, Zurich

Movie S2. Local navigation experiments

Movie S3. Locomotion highlights

Movie S4. Failure cases due to state estimation error

All supplementary videos: https://bit.ly/3qPWWgx

37

https://drive.google.com/file/d/1rxRCTH-Sjz1XbW1CVF97yIO5lOKopnwj/view?usp=drive_link
https://drive.google.com/file/d/1_OtBlqvTuwmsWIIpKOnPTJpco9KOPFKe/view?usp=drive_link
https://drive.google.com/file/d/1ehIv2LKDW7J4xKj3PbyiIYSPenV-5ONR/view?usp=drive_link
https://drive.google.com/file/d/18b9aM2n9kmzCmDSDA0a5J421Bdm-_9kO/view?usp=drive_link
https://drive.google.com/file/d/1jvNdM6immTSyhXEPB0CujZE5_rWIEZL8/view?usp=drive_link
https://bit.ly/3qPWWgx

References

1. M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo,

K. Bodie, P. Fankhauser, M. Bloesch, others, Anymal-a highly mobile and dynamic

quadrupedal robot, 2016 IEEE/RSJ international conference on intelligent robots and sys-

tems (IROS), 38–44 (IEEE, 2016).

2. M. Tranzatto, T. Miki, M. Dharmadhikari, L. Bernreiter, M. Kulkarni, F. Mascarich, O. An-

dersson, S. Khattak, M. Hutter, R. Siegwart, others, Cerberus in the darpa subterranean

challenge, Science Robotics p. eabp9742 (2022).

3. F. Bjelonic, J. Lee, P. Arm, D. Sako, D. Tateo, J. Peters, M. Hutter, Learning-based de-

sign and control for quadrupedal robots with parallel-elastic actuators, IEEE Robotics and

Automation Letters 1611–1618 (2023).

4. L. Wellhausen, M. Hutter, Rough terrain navigation for legged robots using reachability

planning and template learning, 2021 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 6914–6921 (IEEE, 2021).

5. N. Kashiri, L. Baccelliere, L. Muratore, A. Laurenzi, Z. Ren, E. M. Hoffman, M. Kamedula,

G. F. Rigano, J. Malzahn, S. Cordasco, P. Guria, A. Margan, N. G. Tsagarakis, Centauro:

A hybrid locomotion and high power resilient manipulation platform, IEEE Robotics and

Automation Letters 1595–1602 (2019).

6. M. Bjelonic, C. D. Bellicoso, Y. de Viragh, D. Sako, F. D. Tresoldi, F. Jenelten, M. Hutter,

Keep rollin’—whole-body motion control and planning for wheeled quadrupedal robots,

IEEE Robotics and Automation Letters 2116–2123 (2019).

38

7. V. Klemm, A. Morra, C. Salzmann, F. Tschopp, K. Bodie, L. Gulich, N. Küng,

D. Mannhart, C. Pfister, M. Vierneisel, others, Ascento: A two-wheeled jumping robot,

ICRA Int. Conf. on Robotics and Automation (ICRA), 7515–7521 (2019).

8. W. Reid, B. Emanuel, B. Chamberlain-Simon, S. Karumanchi, G. Meirion-Griffith, Mobil-

ity mode evaluation of a wheel-on-limb rover on glacial ice analogous to europa terrain,

IEEE Aerospace Conference, 1–9 (2020).

9. M. Bjelonic, R. Grandia, M. Geilinger, O. Harley, V. S. Medeiros, V. Pajovic, E. Jelavic,

S. Coros, M. Hutter, Offline motion libraries and online mpc for advanced mobility skills,

The International Journal of Robotics Research 903–924 (2022).

10. M. Bjelonic, R. Grandia, O. Harley, C. Galliard, S. Zimmermann, M. Hutter, Whole-body

mpc and online gait sequence generation for wheeled-legged robots, 2021 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), 8388–8395 (IEEE, 2021).

11. M. Geilinger, R. Poranne, R. Desai, B. Thomaszewski, S. Coros, Skaterbots: Optimization-

based design and motion synthesis for robotic creatures with legs and wheels, ACM Trans-

actions on Graphics (TOG) p. 160 (2018).

12. M. Hosseini, D. Rodriguez, S. Behnke, State estimation for hybrid locomotion of driving-

stepping quadrupeds, 2022 Sixth IEEE International Conference on Robotic Computing

(IRC), 103–110 (2022).

13. C. D. Bellicoso, F. Jenelten, C. Gehring, M. Hutter, Dynamic locomotion through online

nonlinear motion optimization for quadrupedal robots, IEEE Robotics and Automation Let-

ters 2261–2268 (2018).

14. F. Jenelten, J. Hwangbo, F. Tresoldi, C. D. Bellicoso, M. Hutter, Dynamic locomotion on

slippery ground, IEEE Robotics and Automation Letters 4170–4176 (2019).

39

15. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, M. Hutter, Learning quadrupedal locomotion

over challenging terrain, Science robotics 5 (2020).

16. T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, M. Hutter, Learning robust percep-

tive locomotion for quadrupedal robots in the wild, Science Robotics p. eabk2822 (2022).

17. W. Xi, Y. Yesilevskiy, C. D. Remy, Selecting gaits for economical locomotion of legged

robots, The International Journal of Robotics Research 1140–1154 (2016).

18. Y. Yang, T. Zhang, E. Coumans, J. Tan, B. Boots, Fast and efficient locomotion via learned

gait transitions, Conference on Robot Learning, 773–783 (PMLR, 2022).

19. G. Bellegarda, K. Byl, Trajectory optimization for a wheel-legged system for dynamic

maneuvers that allow for wheel slip, 2019 IEEE 58th Conference on Decision and Control

(CDC), 7776–7781 (IEEE, 2019).

20. L. Wellhausen, M. Hutter, Artplanner: Robust legged robot navigation in the field, Field

Robotics, 413–434 (2023).

21. J. Frey, D. Hoeller, S. Khattak, M. Hutter, Locomotion policy guided traversability learning

using volumetric representations of complex environments, 2022 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 5722–5729 (IEEE, 2022).

22. R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, A. Giusti, Learning ground traversabil-

ity from simulations, IEEE Robotics and Automation letters 1695–1702 (2018).

23. V. Vapnik, R. Izmailov, Learning using privileged information: Similarity control and

knowledge transfer, Journal of Machine Learning Research 2023–2049 (2015).

24. D. Chen, B. Zhou, V. Koltun, P. Krähenbühl, Learning by cheating, Conference on Robot

Learning, 66–75 (PMLR, 2020).

40

25. G. Ji, J. Mun, H. Kim, J. Hwangbo, Concurrent training of a control policy and a state es-

timator for dynamic and robust legged locomotion, IEEE Robotics and Automation Letters

(2022).

26. CryEngine, Ai and navigation system - cryengine 5 documentation, https://docs.

cryengine.com/pages/viewpage.action?pageId=26869983. [Online; ac-

cessed August-2022].

27. Unreal Engine, Navigation system - unreal engine 5 documen-

tation, https://docs.unrealengine.com/5.0/en-US/

navigation-system-in-unreal-engine/. [Online; accessed August-2022].

28. M. Gumin, Wave function collapse algorithm, https://github.com/mxgmn/

(2016).

29. J. M. Snider, others, Automatic steering methods for autonomous automobile path tracking,

Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08 (2009).

30. T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, M. Hutter, Elevation map-

ping for locomotion and navigation using gpu, 2022 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2273–2280 (IEEE, 2022).

31. E. DIJKSTRA, A note on two problems in connexion with graphs, Numerische Mathematik

269–271 (1959).

32. E. Jelavic, J. Nubert, M. Hutter, Open3d slam: Point cloud based mapping and localiza-

tion for education, Robotic Perception and Mapping: Emerging Techniques, ICRA 2022

Workshop, p. 24 (ETH Zurich, Robotic Systems Lab, 2022).

41

https://docs.cryengine.com/pages/viewpage.action?pageId=26869983
https://docs.cryengine.com/pages/viewpage.action?pageId=26869983
https://docs.unrealengine.com/5.0/en-US/navigation-system-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/navigation-system-in-unreal-engine/
https://github.com/mxgmn/

33. J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, M. Hutter, Learn-

ing agile and dynamic motor skills for legged robots, Science Robotics p. eaau5872 (2019).

34. S. Seok, A. Wang, M. Y. Chuah, D. J. Hyun, J. Lee, D. M. Otten, J. H. Lang, S. Kim,

Design principles for energy-efficient legged locomotion and implementation on the mit

cheetah robot, Ieee/asme transactions on mechatronics 1117–1129 (2014).

35. R. B. McGhee, A. A. Frank, On the stability properties of quadruped creeping gaits, Math-

ematical Biosciences 331–351 (1968).

36. J. Lee, J. Hwangbo, M. Hutter, Robust recovery controller for a quadrupedal robot using

deep reinforcement learning, arXiv preprint arXiv:1901.07517 (2019).

37. L. Wellhausen, R. Ranftl, M. Hutter, Safe robot navigation via multi-modal anomaly detec-

tion, IEEE Robotics and Automation Letters 1326–1333 (2020).

38. M. Sorokin, J. Tan, C. K. Liu, S. Ha, Learning to navigate sidewalks in outdoor environ-

ments, IEEE Robotics and Automation Letters 3906–3913 (2022).

39. M. Kulkarni, M. Dharmadhikari, M. Tranzatto, S. Zimmermann, V. Reijgwart, P. De Petris,

H. Nguyen, N. Khedekar, C. Papachristos, L. Ott, others, Autonomous teamed exploration

of subterranean environments using legged and aerial robots, 2022 International Confer-

ence on Robotics and Automation (ICRA), 3306–3313 (IEEE, 2022).

40. O. Nachum, H. Tang, X. Lu, S. Gu, H. Lee, S. Levine, Why does hierarchy (sometimes)

work so well in reinforcement learning?, arXiv preprint arXiv:1909.10618 (2019).

41. D. Jain, K. Caluwaerts, A. Iscen, From pixels to legs: Hierarchical learning of quadruped

locomotion, Proceedings of the 2020 Conference on Robot Learning, J. Kober, F. Ramos,

C. Tomlin, eds., 91–102 (PMLR, 2021).

42

42. O. Nachum, S. S. Gu, H. Lee, S. Levine, Data-efficient hierarchical reinforcement learning,

Advances in neural information processing systems 31 (2018).

43. A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver,

K. Kavukcuoglu, Feudal networks for hierarchical reinforcement learning, International

Conference on Machine Learning, 3540–3549 (PMLR, 2017).

44. D. Jain, A. Iscen, K. Caluwaerts, Hierarchical reinforcement learning for quadruped lo-

comotion, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 7551–7557 (IEEE, 2019).

45. S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, I. Havoutis, Rloc: Terrain-aware

legged locomotion using reinforcement learning and optimal control, IEEE Transactions

on Robotics (2022).

46. V. Tsounis, M. Alge, J. Lee, F. Farshidian, M. Hutter, Deepgait: Planning and control

of quadrupedal gaits using deep reinforcement learning, IEEE Robotics and Automation

Letters 3699–3706 (2020).

47. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization

algorithms, arXiv preprint arXiv:1707.06347 (2017).

48. P.-W. Chou, D. Maturana, S. Scherer, Improving stochastic policy gradients in continuous

control with deep reinforcement learning using the beta distribution, International confer-

ence on machine learning, 834–843 (PMLR, 2017).

49. C. R. Qi, H. Su, K. Mo, L. J. Guibas, Pointnet: Deep learning on point sets for 3d clas-

sification and segmentation, Proceedings of the IEEE conference on computer vision and

pattern recognition, 652–660 (2017).

43

50. N. Rudin, D. Hoeller, P. Reist, M. Hutter, Learning to walk in minutes using massively par-

allel deep reinforcement learning, Conference on Robot Learning, 91–100 (PMLR, 2022).

51. A. A. Hagberg, D. A. Schult, P. J. Swart, Exploring network structure, dynamics, and func-

tion using networkx, Proceedings of the 7th Python in Science Conference, G. Varoquaux,

T. Vaught, J. Millman, eds., 11 – 15 (Pasadena, CA USA, 2008).

52. M. Mueller, A. Dosovitskiy, B. Ghanem, V. Koltun, Driving policy transfer via modular-

ity and abstraction, Proceedings of The 2nd Conference on Robot Learning, A. Billard,

A. Dragan, J. Peters, J. Morimoto, eds., 1–15 (PMLR, 2018).

53. A. Agarwal, A. Kumar, J. Malik, D. Pathak, Legged locomotion in challenging terrains

using egocentric vision, Conference on Robot Learning, 403–415 (PMLR, 2023).

54. G. Kahn, P. Abbeel, S. Levine, Badgr: An autonomous self-supervised learning-based nav-

igation system, IEEE Robotics and Automation Letters 1312–1319 (2021).

55. G. Kahn, P. Abbeel, S. Levine, Land: Learning to navigate from disengagements, IEEE

Robotics and Automation Letters 1872–1879 (2021).

56. Y. Kim, C. Kim, J. Hwangbo, Learning forward dynamics model and informed trajectory

sampler for safe quadruped navigation, Conference on Robotics-Science and Systems (RSS)

(Robotics: Science and Systems Foundation, 2022).

57. J. Truong, D. Yarats, T. Li, F. Meier, S. Chernova, D. Batra, A. Rai, Learning navigation

skills for legged robots with learned robot embeddings, 2021 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), 484–491 (IEEE, 2021).

44

58. D. Hoeller, L. Wellhausen, F. Farshidian, M. Hutter, Learning a state representation and

navigation in cluttered and dynamic environments, IEEE Robotics and Automation Letters

5081–5088 (2021).

59. M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Siegwart, J. Nieto, Re-

inforced imitation: Sample efficient deep reinforcement learning for mapless navigation

by leveraging prior demonstrations, IEEE Robotics and Automation Letters 4423–4430

(2018).

60. T. Manderson, J. C. G. Higuera, S. Wapnick, J. Tremblay, F. Shkurti, D. Meger, G. Dudek,

Vision-based goal-conditioned policies for underwater navigation in the presence of obsta-

cles, Conference on Robotics-Science and Systems (RSS) (Robotics: Science and Systems

Foundation, 2020).

61. H. Wang, S. Chen, S. Sun, Diffusion model-augmented behavioral cloning, CoRR

abs/2302.13335 (2023).

62. N. Savinov, A. Dosovitskiy, V. Koltun, Semi-parametric topological memory for naviga-

tion, International Conference on Learning Representations (2018).

63. Z. Fu, A. Kumar, A. Agarwal, H. Qi, J. Malik, D. Pathak, Coupling vision and propri-

oception for navigation of legged robots, Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 17273–17283 (2022).

64. E. Wijmans, A. Kadian, A. S. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, D. Batra,

Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames, International

Conference on Learning Representations (2019).

45

65. J. Choi, K. Park, M. Kim, S. Seok, Deep reinforcement learning of navigation in a complex

and crowded environment with a limited field of view, 2019 International Conference on

Robotics and Automation (ICRA), 5993–6000 (IEEE, 2019).

66. E. Wijmans, M. Savva, I. Essa, S. Lee, A. S. Morcos, D. Batra, Emergence of maps in the

memories of blind navigation agents, International Conference on Learning Representa-

tions (2023).

67. K. Zhu, T. Zhang, Deep reinforcement learning based mobile robot navigation: A review,

Tsinghua Science and Technology 674–691 (2021).

68. H. Surmann, C. Jestel, R. Marchel, F. Musberg, H. Elhadj, M. Ardani, Deep reinforce-

ment learning for real autonomous mobile robot navigation in indoor environments, arXiv

preprint arXiv:2005.13857 (2020).

69. R. Yang, M. Zhang, N. Hansen, H. Xu, X. Wang, Learning vision-guided quadrupedal

locomotion end-to-end with cross-modal transformers, Deep RL Workshop NeurIPS 2021

(2021).

70. N. Rudin, D. Hoeller, M. Bjelonic, M. Hutter, Advanced skills by learning locomotion

and local navigation end-to-end, 2022 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2497–2503 (IEEE, 2022).

71. P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka,

J. Malik, R. Mottaghi, M. Savva, others, On evaluation of embodied navigation agents,

CoRR abs/1807.06757 (2018).

72. H. Kolvenbach, D. Bellicoso, F. Jenelten, L. Wellhausen, M. Hutter, Efficient gait selection

for quadrupedal robots on the moon and mars, 14th International Symposium on Artificial

46

Intelligence, Robotics and Automation in Space (i-SAIRAS 2018) (ESA Conference Bureau,

2018).

73. P. N. Ward, A. Smofsky, A. J. Bose, Improving exploration in soft-actor-critic with normal-

izing flows policies, arXiv preprint arXiv:1906.02771 (2019).

74. W. Zhou, S. Bajracharya, D. Held, Plas: Latent action space for offline reinforcement learn-

ing, Conference on Robot Learning, 1719–1735 (PMLR, 2021).

75. A. Allshire, R. Martı́n-Martı́n, C. Lin, S. Manuel, S. Savarese, A. Garg, Laser: Learning

a latent action space for efficient reinforcement learning, 2021 IEEE International Confer-

ence on Robotics and Automation (ICRA), 6650–6656 (IEEE, 2021).

76. D. P. Kingma, M. Welling, Auto-encoding variational bayes, 2nd International Conference

on Learning Representations (2014).

77. L. Dinh, J. Sohl-Dickstein, S. Bengio, Density estimation using real nvp, International

Conference on Learning Representations (2016).

78. J. C. Brant, K. O. Stanley, Minimal criterion coevolution: a new approach to open-ended

search, Proceedings of the Genetic and Evolutionary Computation Conference, 67–74

(2017).

79. O. E. L. Team, A. Stooke, A. Mahajan, C. Barros, C. Deck, J. Bauer, J. Sygnowski, M. Tre-

bacz, M. Jaderberg, M. Mathieu, N. McAleese, N. Bradley-Schmieg, N. Wong, N. Porcel,

R. Raileanu, S. Hughes-Fitt, V. Dalibard, W. M. Czarnecki, Open-ended learning leads to

generally capable agents, CoRR abs/2107.12808 (2021).

80. A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, D. Scaramuzza, Learning

high-speed flight in the wild, Science Robotics p. eabg5810 (2021).

47

81. S. Ross, G. Gordon, D. Bagnell, A reduction of imitation learning and structured prediction

to no-regret online learning, Proceedings of the fourteenth international conference on ar-

tificial intelligence and statistics, 627–635 (JMLR Workshop and Conference Proceedings,

2011).

48

Acknowledgments

Funding: This work was supported by the Mobility Initiative grant funded through the ETH

Zurich Foundation, European Union’s Horizon 2020 research and innovation programme un-

der grant agreement No 101070405, European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme grant agreement No 852044, Swiss

National Science Foundation through the National Centre of Competence in Digital Fabrication

(NCCR dfab), European Union’s Horizon Europe Framework Programme under grant agree-

ment No 101070596 and Apple Inc. Author contribution: J.L. conceived the main idea for

the approach and was responsible for the implementation and training of the controllers. The

high-level policy was trained by J.L. while M.B. developed the simulation environment for the

low-level policy and also trained it. The navigation system and safety layer were collabora-

tively devised and implemented by J.L., M.B., A.R., and L.W. Real-world experiments were

planned and executed with contributions from A.R. and L.W. Initial setup of the low-level con-

troller was facilitated by T.M. All authors played a significant role in system integration and

experimentation. Other contributors: We appreciate Turcan Tuna for helping us integrating

Open3D SLAM, Julian Keller for the API integration, and Giorgio Valsecchi for the hardware

support. Conflict of interest: The authors declare that they have no competing interests. Data

and materials availability: All (other) data needed to evaluate the conclusions in the paper are

present in the paper or the Supplementary Materials.

49

Supplementary Materials

S1. Nomenclature

(̂·) normalized vector

(·)des desired quantity

v linear velocity of the robot in world frame

vB linear velocity of the robot in B frame

pA position of A in world frame

wp1 first waypoint position

wp2 second waypoint position

Pbuf the position buffer

pibuf the i-th position saved in the position buffer

nibuf The number of visits for the i-th position saved in the position buffer

ω angular velocity

τ joint torque

q joint position

ψ yaw angle

rf linear position of a foot

eg gravity vector

Ic,body index set of body contacts

Ic,wheel index set of wheel contacts

|·| cardinality of a set or l1 norm

||·|| l2 norm

50

S2. Implementation Details

In this section, we add some implementation details that are necessary to enable kilometer-scale

autonomous deployments and a successful sim-to-real transfer.

Localization

Using Open3D SLAM (32), we localize based on the data of the Velodyne VLP-16 LiDAR

mounted on top of the robot in a known point cloud map generated with the Leica BLK2GO

reality capture device. Notably, Open3D SLAM only uses well-known algorithms, such as

Iterative Closest Point (ICP), in their core form while using Open3D as a powerful backend

for 3D data processing. For this work, we adapted Open3D SLAM to use odometry from

IMU and joint encoder data as prior for scan-to-map matching. We expect this high-frequency

odometry source to contribute to the systems robustness because scan-to-scan matching might

fail at higher speeds or in degenerate environments.

Global Planning

For global navigation, we also rely on well-established methods and libraries. Leveraging the

reality capture data, we manually design a sparse navigation graph offline as shown in Fig. 3.

During deployment we compute the shortest path from the robot’s current position to the goal

position with Dijkstra using the networkX (51) Python library.

Waypoint Selection

The global path obtained from the navigation graph can contain nodes that are tens of meters

apart while the high-level policy was trained with waypoints that are at most 10 m apart. To

resolve this issue, we introduce a simple waypoint selection method called ”anchor pursuit”,

inspired by the ”pure pursuit” path following algorithm. If the next path nodes is less than 3 m

from the current robot position, we select it as a waypoint. In case it is farther, we instead project

51

the robot position onto the path and select a waypoint with a 3 m lookahead distance. This

ensures that the nodes or so-called anchor points are always approached and the robot doesn’t

take undesired shortcuts around these core waypoints of the global path. Also note that this

is different from interpolating the global path at fixed distances and sequentially approaching

these sub-waypoints since with ”anchor pursuit” the sub-waypoints are moving forward with

the robot. This allows for greater freedom in circumnavigating obstacles, since interpolated

waypoints do not need to be followed exactly. In future work, one could add exteroceptive

information, e.g. semantically segmented images (52), to generate more sophisticated refined

paths for the hierarchical controller or even incorporate this capability into the high-level policy

itself.

Local Terrain Mapping

To obtain the extereoceptive observations on real hardware, we use a GPU-accelerated geomet-

ric terrain mapping approach (30), which provides a local elevation map around the robot based

on the data of the two Robosense RS-Bpearl dome LiDARs mounted at the front and rear of the

robot. The points for the foot scan for the locomotion policy and the base scan for the navigation

policy are extracted from the elevation map. Removing the local terrain mapping and directly

providing the raw extereoceptive data, e.g. via depth images (53) or point clouds, is subject to

future work and can help to reduce processing delays.

Human Detection

For human detection, we use the Stereolabs ZED 2i stereo camera. Their SDK provides a ”Spa-

tial Object Detection” feature, which detects humans and provides an estimate of the human’s

position in the camera frame. As shown in Fig. 4B, this position is used to augment the foot and

base scans with a safety margin around the human.

52

Modeling Actuators

For successful sim-to-real transfer, it is crucial to simulate the dynamics of the joint actuators.

The non-linear characteristics of robotic actuators such as joint friction, delay, and backlash are

very difficult to model with simple analytic models. Instead of modeling the whole actuator, we

used neural network models to simulate the complex dynamics efficiently.

The joint actuators are fully simulated by an actuator network (33), which is trained with ac-

curate torque measurements from Series Elastic Actuator (SEA)s. Wheel actuators are pseudo-

direct drives and we do not have access to accurate torque measurements. Instead, we learn the

mapping from velocity command and a history of past velocity readings to the motor current,

i.e., It = f(ϕ̇target|ϕ̇t−1, ϕ̇t−2, · · ·), using a neural network. Then, the torque is computed by

τt = Kτ ∗ GR ∗ It where Kτ is the torque constant and GR is the gear ratio. Additionally, we

simulated joint friction such that τt = Kτ ∗GR ∗ It + τfriction. The friction is modeled by two

terms: Coulomb friction τfriction,C = −C!ϕ̇ and the stick friction τfriction,S = −C2sgn(ϕ̇) with

constants C1 and C2. C1 and C2 are randomized and included in the privileged observation.

S3. Reward Functions

In this section, we provide a detailed explanation on the reward function for each agent. We

categorize the reward functions into three groups:

• High-level reward (rh): high-level objectives such as waypoint or goal position tracking.

• Low-level reward (rl): achieving the commands given by the πhi.

• Regularization reward (rr): constraint-related objectives and regularization terms.

The main objective of the πhi is defined by rh, and the πlo focuses on the low-level control

(e.g., pose control, balancing, and locomotion control) by maximizing the discounted sum of

53

rl. rr defines additional sub-objectives such as joint velocity penalty, torque minimization, or

action smoothness. Such regularization objectives are often introduced for robotic applications

to avoid damaging hardware or to facilitate sim-to-real transfer. In RL, it is done by adding rr

to the reward functions (15, 25, 50).

The low-level policy is trained using rl + rr, and the high-level policy is trained using

rh + wl · (rl + rr) with a constant scale wl. We chose the value of wl such that the expected

sum of rh and rl+ rr are at a similar magnitude. This makes rh generate smooth and low-effort

trajectories that respect the capability of the low-level policy.

High-level Rewards

The high-level reward (rh) is defined as a linear combination of functions below.

• Goal reaching. The basic sparse reward for reaching the first waypoint (wp1):

rh,goal :=

{
1.0 |probot − wp1| < 0.75

0.0 otherwise
. (3)

• Dense tracking reward Explained in the main text:

rh,dense :=

{
1.0 |ewp1| < 0.75

clip(v · êwp1 , 0.0, vthres)/vthres otherwise
(4)

where ewp1 = probot − wp1 and vthres = 0.5.

• Exploration bonus. Explained in the main text:

rh,exp :=
∑
Pbuf

C(st, wp
1
t , p

i
buf), (5)

where

C(probot, wp
1, pibuf) :=

{
0.0 |probot − wp1| < 0.75

−nibuf |probot − pibuf | < 1.0
. (6)

54

• Near-goal stability. This reward motivates the robot to stay still near the goal point. This

reward is a part of regularization reward, but this is only active during the high-level

policy training:

rh,stability :=

{
exp (−2.0||v||2) |probot − wp1| < 0.75

0.0 otherwise
. (7)

Low-level Rewards

The low-level reward (rl) is modified from the reward terms by Miki et al. (16). rl is defined

with the linear combination of the following terms:

• Linear velocity. This term encourages the policy to follow a desired horizontal velocity

(velocity in xy plane) command:

rlv :=

{
2.0 exp(−2.0 · ||vbodyxy ||2), if |vdes| < 0.05

exp(−2.0||vbodyxy − vdes||2) + vdes · vbodyxy , otherwise
, (8)

where vdes ∈ R2 is the desired horizontal velocity.

• Angular velocity. This term encourages the policy to follow a desired yaw velocity com-

mand:

rav := exp(−2.0(ωbodyz − ωdes)
2), (9)

• Body motion. This term penalizes the body velocity in directions not part of the command:

rbm := −1.25(vbodyz)2 − 0.4|ωbodyx | − 0.4|ωBy |. (10)

• Body orientation. This reward penalizes the angle between the z-axis of the world and

the z-axis of the robot’s body:

rori = arccos(Rb(3, 3))
2, (11)

55

where Rb(3, 3) is the last element of the rotation matrix representation of the body orien-

tation.

• Body height. This reward motivates the policy to keep the height of the robot’s base above

the ground (hbase) around 0.55 m with the tolerance of 0.05 m:

rh = max(0.0, |hbase − 0.55| − 0.05). (12)

Regularization Rewards

• Torque penalty. We penalize the joint torques to prevent damaging joint actuators during

deployment and to reduce energy consumption (τ ∝ electric current):

rτ := −
∑

i∈joints||τi||2. (13)

• Joint motion. This term penalizes joint velocity and acceleration to avoid vibrations:

rs = −ck
12∑
i=1

(q̇i
2 + 0.01q̈i

2), (14)

where q̇i and q̈i are the joint velocity and acceleration, respectively.

• Target smoothness. The magnitude of the first and second order finite difference deriva-

tives of the target joint positions are penalized such that the generated joint trajectories

become smoother:

rs = −ck
12∑
i=1

((qi,t,des − qi,t−1,des)
2 + (qi,t,des − 2qi,t−1,des + qi,t−2,des)

2), (15)

where qi,t,des is the joint target position of joint i at time step t.

• Joint position constraint. This term introduces a soft constraint in the joint space. To

avoid the knee joint flipping in the opposite direction, we give a penalty for exceeding a

56

threshold:

rjc,i =

{
−(qi − qi,th)

2, if qi > qi,th

0.0 otherwise
, (16)

rjc =
12∑
i=1

rjc,i, (17)

where qi,th is a threshold value for the ith joint. We only set thresholds for the knee joint.

• Bad contact penalty. Contacts with the environment are penalized except for the wheels:

rbc := −|Ic,body\Ic,wheel|. (18)

• Survival bonus. Not terminating is densely rewarded:

rh,surv := 1.0 while not terminated. (19)

S4. Comparison to Related Works and Validation of Our Method

In this section, we present a survey of relevant research concerning the development of navi-

gation policies for mobile robots using RL. Focused on the works based on model-free RL, we

extract essential design choices and conduct a comparative analysis with our approach.

It’s noteworthy that alternative methodologies also exist, including those based on offline RL

or model-based RL (54–56). For instance, Kahn et al. (54,55) showed outdoor navigation using

an offline-trained dynamics model combined with a sampling-based planner. However, we

maintain our focus on the model-free approach and local navigation setup (up to 20 m distance

to goal) because we aim to develop a highly responsive control policy with a high control rate

and minimal onboard planning as described in the introduction.

Key Design Choices in Existing Literature

Upon reviewing the existing literature, we have identified several critical factors that contribute

to enhancing the navigation performance of a learned agent. These key design choices observed

57

in prior research include:

1. Modularity and Abstraction: Navigation problems are often addressed by decomposing

them into sub-problems and then tackling each using specialized sub-modules. This mod-

ular approach, exemplified by hierarchical control systems, streamlines the developmen-

tal process as evidenced in existing studies (41,44,57). In the context of HRL, separating

low-level locomotion and high-level navigation on different time scales benefits explo-

ration and performance (40,44), with higher-level agents operating at a slower frequency.

The temporal abstraction by design enhances exploration and improves final performance

in some cases. Furthermore, integrating pre-trained perception modules has shown to

enhance the navigation proficiency in complex settings, as demonstrated in the investiga-

tions carried out by Müller et al. (52) and Hoeller et al. (58).

Our approach aligns with this paradigm. HLC operates at a slower frequency and utilizes

the pre-trained RNN encoder from the LLC as a state representation. Our experiment be-

low shows the importance of the former in navigation performance, while the latter plays

a crucial role in robust robot deployment, especially on challenging terrains (depicted in

supplementary video S4.).

2. Utilization of Expert Demonstration: Many existing works make use of expert demon-

stration, often sourced from either executing a sampling-based planner (59) or human

demonstrations (60,61). Imitation learning is a widely adopted approach for autonomous

driving and navigation domains, offering accelerated learning and enhanced performance.

In our case, while we could generate expert demonstrations using a sampling-based plan-

ner (20), we refrained from this approach due to its significant computational overhead.

Instead, we opted to leverage pre-generated paths from our simulation environment and

trained a high-level policy to adhere to them via path sampling and dense reward.

58

https://drive.google.com/file/d/1jvNdM6immTSyhXEPB0CujZE5_rWIEZL8/view?usp=drive_link

3. Memory: Memory, whether explicit or implicit, plays a significant role in point-goal

navigation. Literature frequently incorporates explicit memory mechanisms (62, 63) or

employs RNN architectures to address this need (58, 64, 65). Extensive analysis by Wi-

jmans et al. (66) highlights the contribution of memory in successfully accomplishing

navigation tasks.

Similarly, we incorporate memory, albeit in a simplified manner. Tailoring our approach

to real-world requirements, we designed our formulation to employ simple models (e.g.,

MLP or shallow CNN) and interpretable states. Rather than depending on generic, navigation-

agnostic RNN structures, we integrate explicit information about visited positions and

times.

4. Dense Reward: Dense reward-shaping is a prevalent strategy due to the inherent difficulty

in training sparse reward formulations. Notably, dense reward functions are frequently

employed to incentivize policy progression or to penalize collision occurrences (41, 67,

68). Some works define the dense reward functions based on the geodesic distance, which

is the shortest obstacle-free path to the goal (57, 59, 64).

In our approach, we leverage dense rewards only during the initial training phase. This

is because the dense rewards based on the shortest obstacle-free path do not account

for dynamic obstacles or intricate environmental dynamics such as varying friction and

disturbances.

While it’s not mentioned above, similarly to locomotion research, the sim-to-real approach

is widely adopted. Using large amounts of synthetic data improves training efficiency and

robustness, owing to the large amount of data collected from diverse simulated scenarios.

We have integrated the above principles from the literature into our approach. Our HRL

formulation follows the task decomposition appearing in the literature, and our simulation en-

59

vironment is designed based on the insights from points 2 to 4.

Validation of Our Approach

We proceed to conduct a comparative analysis between our approach and the baselines defined

below. The first two baselines aim to validate the effectiveness of our graph-guided naviga-

tion learning approach, whereas the subsequent baselines are derived from existing literature.

These subsequent baselines are meant to isolate and identify the distinct contributions of each

component within our approach.

1. Without path sampling: This baseline evaluates the advantage of using pre-generated,

obstacle-free paths to generate waypoints during training. While it is trained in an envi-

ronment identical to ours, the goals are uniformly distributed across the terrain without

accounting for obstacles or ensuring a feasible path.

2. Without WFC Features: This baseline evaluates the importance of providing various navi-

gation challenges during the training. Instead of using terrain features generated by WFC,

this baseline is trained over rough terrains with randomly placed obstacles.

3. Memoryless: This baseline does not incorporate position history, aligning it with the

reactive policies presented by Jain et al. (41) and Pfeiffer et al. (59). It is trained in the

same environment as ours.

4. No temporal abstraction: This baseline evaluates the importance of temporal abstraction

for the navigation task. We train a high-level policy with the same control frequency as

the low-level locomotion policy (50 Hz).

5. End-to-end: This baseline assesses the advantages of the hierarchical decomposition of

the task. It is a single policy directly outputting joint control commands, trained to pursue

60

Policies
SPL (Success Rate) by Path Length

5 to 10 m 10 to 20 m
Ours 0.897 (0.901) 0.689 (0.763)
Baseline 1. Without path sampling 0.858 (0.840) 0.497 (0.559)
Baseline 2. Without WFC features 0.865 (0.871) 0.302 (0.305)
Baseline 3. Memoryless 0.873 (0.897) 0.526 (0.573)
Baseline 4. No temporal abstraction 0.798 (0.823) 0.370 (0.397)
Baseline 5. End-to-end 0.304 (0.318) 0.045 (0.046)

Table S1: Performance comparison between different navigation policies. Values in the paren-
thesis indicate success rates. Each value represents an average taken from 1000 randomly gen-
erated terrains and paths.

waypoints. The policy is trained with rh+ rl, without the velocity tracking rewards. This

formulation is in line with the work of Yang et al. (69) and Rudin et al. (70).

We conduct evaluations based on the methodology proposed by Anderson et al. (71), em-

ploying the Success weighted by Path Length (SPL). The SPL is given by:

1

N

N∑
i=1

Si
li

max(pi, li)

where li corresponds to the shortest path distance between the starting position and the goal in

episode i, pi represents the actual path length traversed by the robot, and Si is a binary indicator

denoting the success of episode i. In our experiment, we compute li as the shortest distance on

the navigation graph.

We evaluated the SPL and success rate for different path lengths (li), as shown in Table S1.

This was done using 1,000 randomly generated terrains, with randomly sampled paths ranging

from 5 to 20 m. A waypoint is given at the path’s endpoint. An episode is considered successful

when the robot approaches the waypoint within 50 cm in 60 s.

We begin by validating our graph-guided navigation learning approach with baselines 1 and

2. Both baselines show degraded performance for the distant goals. When a policy is trained

to track arbitrary goals (baseline 1), we observed that the policy becomes overly conservative

61

with distant goals. This is due to the high occurrence of infeasible goals, leading to increased

failures during training. Without WFC-generated terrain features during training (baseline 2),

the randomly generated environment fails to provide a policy with diverse challenges like tight

spaces and transitioning terrains. Consequently, baseline 2 exhibits limited performance when

navigating complex environments. Results from these baselines underscore the importance of a

well-structured training environment that offers quality training data.

We then evaluate each component of our navigation policy. As given in Table S1, our

approach shows higher SPL and success rates compared to the ablated baselines. When the

memory is removed, the baseline 3 showed approximately 16 % lower SPL for the distant goals

(beyond 10 m). The baseline 3 still shows more than 50 % success thanks to its explorative

behavior, depicted in Fig. 6D-ii. The limited impact on performance can be attributed to our

focus on local navigation. However, in scenarios that demand extensive memory capabilities, as

demonstrated in (64), this component becomes more important. Baselines 4 and 5 results show

the importance of the hierarchical decomposition of the problem. Baseline 4, lacking tem-

poral abstraction, and baseline 5, omitting problem sub-division (modularity), both encounter

increased difficulty in solving complex navigation tasks with distant goals. Regarding baseline

5, the need to address rough-terrain locomotion and point-goal navigation within a single MDP

introduces challenges in terms of reward shaping. To achieve better results, extra engineering

efforts would be necessary.

In conclusion, we have validated our approach across different training environments and

MDP formulations from existing literature. The analysis shows that each individual component

is important in enhancing navigation performance. Our approach effectively incorporates key

concepts from existing literature. In particular, our terrain generation and learning strategy

significantly contribute to the final performance.

62

S5. Comparison of Different Architectures

In this section, we provide our experiment with different policies. We explored three different

approaches to learning gait-switching behavior:

• No Explicit Gait Design (Ours1): High-level policy commands velocity target and low-

level policy outputs joint position target and wheel velocity target directly. No CPG is

used. No stylistic rewards such as the air-time reward by (25,50) or foot clearance reward

by (15).

• Hierarchical Gait Selection (Ours2): High-level policy outputs desired foot contact states

per foot (either 1 or 0) in addition to the velocity command. Low-level policy learns

gait following and velocity tracking. The low-level policy is first trained with known gait

patterns, e.g., trot, pace, and static walk, and then trained alternatingly with the high-level

policy.

For the low-level policy, we introduced an additional gait-tracking reward, defined as

rgait := 0.1 ·
∑

i∈0,1,2,3

1(fc(i) = fc(i)g), (20)

where fc(i) denotes the desired contact state of the i-th foot and fc(i)g is the target contact

state given by the high-level policy.

• Baseline (15,16): This is an end-to-end approach, with single policy. Trained with rh+rr.

We used the same action space as Miki et al. (16). The gait frequency and duty factor are

fixed to 1.0 Hz and 0.5, respectively, and the initial phases are randomized.

We conduct an experiment where the robot is commanded toward a waypoint behind a

1m× 1m obstacle. The experimental setup and motion sequences are shown in Fig.S1.

Hierarchical controllers only step when faced with the obstacle (Fig.S1C and Fig.S1D).

Ours1 and Ours2 show similar behaviors with different gait frequencies and timing. On the

63

A

B High-level velocity commanding policy

LF
RF
LH
RH

C High-level velocity and gait commanding policy

LF
RF
LH
RH

D End-to-End baseline (single policy with CPG action space)

LF
RF
LH
RH

time (s)

Figure S1: Different controllers during collision avoidance. On flat terrain with an obstacle,
the waypoint is given behind the obstacle. (A) Motion sequence of our controller. (B-D) Foot
contact sequences of different approaches. The robot faces the obstacle at around 2.0 s.

64

other hand, the baseline shows regular stepping and can adapt gait frequency, but keeps stepping

even when it is not necessary. This is mainly due to the fixed CPG that limits the exploration

of different walking patterns. In (15) and (16), the gait frequency is manually set to 0 when no

stepping is desired.

Our final controller follows approach 1 for simplicity, but both resulted in similar perfor-

mance and gait-switching behavior.

The second approach follows the traditional separation of locomotion and gait planning (9,

13, 45). The modular design simplifies the locomotion control problem with a fixed gait and

allows for individual gait analysis (72). To learn gait patterns, we use a learned action space that

maps the output of the high-level policy, which is defined as Beta distribution, to a distribution

of gait parameters (73–75). The generative model is trained with known gait parameters (6,13).

Learned Action Space for Gait-generating High-level Policy

For the gait commanding high-level policy, we had to implement a special action space. Explor-

ing the space of gait parameters with the commonly used Gaussian distribution can be inefficient

because not all the real-valued vectors can represent feasible gaits, and the feasible parameters

can be sparsely distributed. To improve exploration and accelerate learning, we use a learned

gait generator as the action space of the high-level policy.

Existing works have proposed using generative models such as Variational Autoencoder

(VAE)s (74, 75) or a normalizing flow (73) to transform the action distribution into a different,

possibly multi-modal, distribution. Wenxuan et al. (74) and Allshire et al. (75) proposed to

pre-train generative models with existing motion data for higher sample efficiency.

Similarly, we construct a learned latent action space with a RealNVP model (73) that gen-

erates gait patterns from a Beta distribution. We chose RealNVP instead of VAE (76) because

the RealNVP can be updated during the RL update by policy gradient thanks to its invertibil-

65

ity (73, 77).

We construct a stochastic policy π(a|s) by two neural network modules in series. Firstly,

an MLP outputs parameters for the Beta distribution that serves as a base distribution. Then

follows an invertible normalizing flow layer to get a = fψ(z), where z ∼ N (µθ(s), σθ(s)).

fψ denotes a RealNVP. We can directly use the RealNVP policy instead of Gaussian policies

within RL algorithms since it is possible to compute the log-likelihood of the action by

log
(
π(a|s)

)
= log

(
pz(f

−1
ψ (a))

)
+ log

(∣∣∣∣∣det
(
∂f−1

ψ (a)

∂aT

)∣∣∣∣∣
)
. (21)

The RealNVP layers are pre-trained to generate gait parameters from a uniform distribution.

It is trained by minimizing the log-likelihood:

Ex
{
− log

(
pz(f

−1
ψ (x))

)
− log

(∣∣det (∂f−1
ψ (x)/∂xT

)∣∣)} , (22)

where x is sampled uniformly from known gait parameters.

S6. Filtering Terrain Parameters

To ensure that the low-level policy training focuses on traversable terrain, we employ the adap-

tive terrain curriculum method introduced by Lee et al. (15). This selection process specifically

targets the low-level policy training phase.

Using a genetic algorithm based on the Minimal Criterion (MC) (78), we avoid terrain

parameters that are either too difficult or too easy for the agents. The fitness function, denoted

as f(cT , π), is defined as follows:

f(cT , π) =

{
E{ν(st | cT)} if tl < E{ν(st | cT)} < th

0.0 otherwise
. (23)

Here, cT denotes the terrain parameter being evaluated, and π represents the policy being

trained. The expected value Eν(st | cT) is computed over the trajectories generated by the

policy during each iteration, where ν(st | cT) is a score function reflecting the successful

66

traversal of a sampled terrain at state st. In our case, ν(st) is set to 1.0 if the velocity tracking

error is less than 20% of the command speed.

The threshold parameters tl and th define the MC, ensuring that terrain parameters with a

success rate between tl and th are selected. In other words, terrain parameters that fall within

this success rate range are considered feasible for training.

These selected terrain parameters are then reused to generate tile maps for the subsequent

high-level policy training, ensuring that the high-level policy is trained on feasible terrain envi-

ronments suitable for navigation.

The concept of dynamic task generation and open-ended learning, demonstrated by the

Open-Ended Learning Team at DeepMind (79), further supports the effectiveness of this ap-

proach. The automatic generation of new solvable problems enhances the agent’s generalization

capabilities.

S7. Privileged Training

We follow the privileged learning method proposed by Lee et al. (15) for robust Sim-to-Real

transfer. The policy trained by RL serve as ”teacher policy”. It uses the is the ground-truth

state st from simulation which includes privileged information xt. xt includes ground friction

coefficient or ground reaction forces, which are not directly observable in the real world.

A recurrent ”student policy” network is trained in a supervised fashion without xt. The stu-

dent policy imitates the teacher and learns to construct an internal representation of the world

from a sequence of the noisy real-world observations. A policy trained in this way has proven

to be more adaptive and robust in real-world settings with high disturbances and noisy observa-

tions (15, 16, 80).

We employ the DAgger (81) algorithm for imitation learning. We collect trajectories using

the low-level student policy and label target actions using the teacher policy. The loss function

67

is defined as

L := E(st,ot)∼D
{
(πteacher(st)− πstudent(ot, ht))

2
}
, (24)

where ot denotes the observation and ht denotes the hidden state of the student policy. ot is a

noisy version of st \ xt.

S8. Bounded Action Space for HLC

We employ the Beta Distribution for the action space of HLC (48). The beta distribution is

a continuous probability distribution defined on the interval [0, 1], characterized by two shape

parameters, α (alpha) and β (beta). These parameters determine the shape and probabilities

associated with different outcomes.

The probability density function (PDF) of the beta distribution is given by the formula

f(x;α, β) = xα−1(1−x)β−1/B(α, β), where x represents the random variable representing the

probability, andB(α, β) is the beta function. The expected value (mean) of the beta distribution

is given by E[X] = α/(α + β), and the shape parameters α and β determine the variance of

the distribution. Higher values of α + β lead to lower variance.

We modify the parameterization of the beta distribution to define the bounded action space

for our high-level policy. Instead of directly outputting the α and β parameters from πhi, we

design our policy to directly output the mean and the sum of α and β. More specifically, let a1

and a2 be the outputs of the high-level policy πhi(st), we have α = a1 ·a2 and β = a2−(a1 ·a2).

This design choice eliminates the need for additional computing of the mean after inference.

68

Parameter Value
discount factor 0.99

KL-d target 0.01
clip range 0.2

entropy coefficient 0.001
max. episode length (s) 10.0

dt (s) 0.02
batch size 500000

num. minibatches 20
num. epochs 4
learning rate adaptive∗

Table S2: Hyperparameters for LLC teacher policy training. (∗) Follows the implementation by
Rudin et al. (50).

Parameter Value
discount factor 0.991

KL-d target 0.01
clip range 0.2

entropy coefficient 0.001
max. episode length (s) 15.0

dt (s) 0.1
batch size 150000

num. minibatches 10
num. epochs 5
learning rate adaptive

Table S3: Hyperparameters for HLC training.

69

